题目
Given an array of unique integers, arr, where each integer arr[i] is strictly greater than 1.
We make a binary tree using these integers, and each number may be used for any number of times. Each non-leaf node’s value should be equal to the product of the values of its children.
Return the number of binary trees we can make. The answer may be too large so return the answer modulo 10……9 + 7.
解题思路
dp[i]表示以i为根的树的个数 dp[i] = 1 + sum(dp[n] * dp[i // n]) if i / n is integet and i / n in arr sum(dp[i] for i in arr) 为所求
代码
class Solution:
def numFactoredBinaryTrees(self, arr: List[int]) -> int:
MOD = 10**9 + 7
arr = set(arr)
@lru_cache(None)
def dp(i):
res = 1
for n in arr:
if i % n == 0 and i // n in arr:
res += dp(n) * dp(i // n)
return res
return sum(dp(i) for i in arr) % MOD
视频讲解 YouTube<--欢迎点击订阅
视频讲解 bilibili<--欢迎点击订阅
-
Previous
LeetCode 1461 Check If a String Contains All Binary Codes of Size K (Python) -
Next
LeetCode 1721 Swapping Nodes in a Linked List (Python)
Related Issues not found
Please contact @MaxMing0 to initialize the comment